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SUMMARY 

The condition number c  of a non-singular matrix A 

is defined by c (A) = fp(A)(p(A~ ), where ordinary (p is 

a norm.  It is known that for certain norms, the matrix AA* 

is more "ill-conditioned" than A, i.e.,  c (A) <  c (AA*). 

We prove that this inequality holds whenever the norm q> is 

unitarily invariant (tp(A)  is a function of the characteristic 

roots of AA*). However, we show that the inequality is 

independent of the usual norm axioms.  Some more general 

inequalities are also obtained. 



NORMS AND CONDITION NUMBERS 

By 

Albert W. Marshall and Ingram Olkln 
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1.  Summary and Introduction. 

The genesis of this study is the proposition that under pertain 

conditions, the matrix AA* is more "ill-conditioned" than A. 

More precisely, the condition number c (A)  is defined for non-singular 

matrices A as 

c^A)  = (p(A) q^A"1) , 

where ordinarily <p is a norm. The statement concerning ill-conditioning 

of AA* is the inequality 

(c) c (A) < c (AA*) . 
"P    -  <P   ' 

Where <p(A) is the maximum absolute characteristic root of A 

l/2 
and where cp(A) = (tr AA*) ' ,     inequality (c) was proved by 0. Tausky- 

Todd [6]. This raises the question of whether (c) is true for all norms. 

In this paper, we show that quite the contrary is true;  (c)  is 

independent of the usual norm axioms. However, we also prove that (c) 

does hold for a quite general  class of norms. 

In the course of proving these results, we obtain some inequalities 

for syrrmetric gauge functions, which may be of independent interest. 



2.  Gauge functions and matrix norms. 

We call 9 a matrix norm If 

(al) qp(A) > 0    when A ^ 0 , 

(all) cp(aA.) = |a| 9(A) for complex a , 

(alii) (p(A+B) < (p(A) + q)(B) . 

In addition to these basic axioms, various other conditions are sometimes 

imposed: 

(alV) rt\*)  = 1 , 

where E   is the matrix with one in the (i,j)-th position and 

zero elsewhere, 

(aV) (p(AB) < <p(A) (p(B) , 

(aVl)     <p(A) = qp(UA.) = qp(AU)  for all unitary matrices U. 

If 9 satisfies  al, all, alii, and aVI, <p is called a unitarily 

Invariant norm. 

There is an important connection between unitarily invariant norms 

and symmetric gauge functions. A function * on a complex vector space 

is called a gauge function if 
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Xbl) «(u) > 0 when u ^ 0 , 

(bll) *(au) = |al «(u) for complex a , 

(bill) 4(u+v) < *<u) + 4(v) . 

Often it is convenient to assume, in addition, that 

(blV) «(e^ = 1 , 

where e  is the vector with one in the 1-th place and zero elsewhere. 

If, in addition to bl, bll, and bill, 

(bV) «<u1,...,un) = Hw >   ">>  «^ ) 
1 

whenever e• = *. 1 and (l1,...,i ) is a permutation of (l,..o,n), 

then * is called a symmetric gauge function. 

It was noted by Von Neumann [7] that a norm 9 is unitarily 

invariant if and only if there exists a symmetric gauge function * 

2     2 
such that q)(A) = ^(a) for all A, where OL,...,a      are the 

eigenvalues of AA*. 

If $ is a symmetric gauge function and u,v satisfy u. < v, > 

i = 1,...,n,  then it follows [5, p. 85] that 

(2.1) 4(1^,...,^) ^«(v.^...,^) 



If * is a symmetric gauge function satisfying blV,  then [5, p.86] 

n 
(2.2) max |u | < *(IL,...,U ) <  I |u | . 

1   x       ■"■ 1=1  :L 

If <j> is the unitarily invariant matrix norm determined by * as above, 

then it follows that 

n 
^ X. (ABB*A*) 

m(AB) i=l      
cp(A) q)(B) - [max \  (AA.*)] [max \  (BB*)]  - n ' 

1 J   J 

where X.(M) are the eigenvalues of M. Thus, for any k > n, 

kxp is a unitarily invariant matrix norm also satisfying aV. 

Of course, cp itself satisfies alV (since 0 satisfies blV),  and 

this property is destroyed by the renormalization. 

3-  The condition number inequality. 

Theorem 3.1. If 9 is a unitarily invariant norm, then 

(c) cf(A) < c(p(AA*) . 

If $ is a symmetric gauge function which determines q),  then 

we may rewrite  (c)  in the form 

«Ko^, ...,an) ^(a^ ,...,a^ ) < ^{a^ ... ^  *(ct^2, ...,a^2) . 

Thus, Theorem 5-1 is  a very special case of 



Theorem 3.2. If <I> is a symmetric gauge function, then 

«(OL,...,«» ) <l>(arr, ...,a" )  is increasing in r > 0, where a. > 0. 

The proof of Theorem 5.2 is embodied in the lemmas helow. 

We say (a , ...,a )  is ma.i prized "by (b , ...,b ),  written 

(a)-<(b), if (i) a1>...>an>0,  ^ > ... > bn > 0, 

k      k n     n 
(ü) 1^ <   L**'    k=l,...,n-l,  (Hi) ^a = J] b . 
II1 I1! 

Lemma 50. If i&)  -^ (b) , and $ is a symmetric gauge function, then 

(3.1) $(a1,...,an) < $(b1,...,bn) , 

(3.2) $(an ,...,a ) < ^(bT ,...,b  ) % 1 '   ' n ' —  ^1'   '  n  ' 

Proof. A proof of (3-1) has been given by Fan [l]j by an argument 

similar to his, we prove (3.2). 

First, note that we can assume for h and j fixed,  h < j, 

(3.5)  a^ = Qtoh + (l-a)b. , a^  = (l-a)bh + ab. , a^^ = bi, i ^ h,J . 

That this is true follows from the fact that if  (a) -^ (b),  then a can 

be derived from b by successive applications of a finite number of 

transformations of the form (5-5) (see [2, p. 4?]). 
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Let    ^ = (^^ •••>\^J,bh+1, ..^bj^b^bj^,...,^).    By convexity, 

(ab. + (l-a)b, )"1    <   ab"1 + (l-a)^1 . 

Then using  (2.l),   it follows that 

4(a^ ,...,a^ ) = <!>{ab1 + (l-a)^)"  , ,   (ab    + (l-a)b^)"1 

< «(abT1 + (l-a)b '1,     .   .   .    , ab"1 + (l-a)b "1) —    xl x/l' 'n n 

<a «(b^1,...,^1) + (l-a) 4(b1"1,...,bn"1)  . 

As a consequence of Lemma 5«5»i we have that if (a) J^  (b)  then 

«(a-^ ....»a^) $(a^ ,...,a^ )  < »(b^...,^) $(b^ ,'" ,\  ) 

The proof of Theorem 3'2  is  complected by the following 

Lemma 3.4.     If    a.,   >  ,..  > a    > 0    and    a.   = a.   / Z a.,     b.   = a.  / E a.,  — 1- -n 11' j'ii' J' 

0 < r < s,     then     (a)-^  (b). 

Proof.    We must  show that for all    k, 

k k Zr T-      s a, )  a. 
1 T 1 

< n —    n 
r-        r r- £ 

1 1 

r < s   , 



which is true if and only if 

n 

1   k+l ^  1   k+1 J  i=l   J=k+1 d       J 

The latter follows from Ot, > Qt >  i < J .  |] 

Observe that by (5'l) and- Lemma 5.4-, we have 

*(o£,...,o£)    L c^ 
< 

»(c^,...,o{)   zaj 

In view of (2.2), it is perhaps natural to expect that 

(J.« 
< < 

*(o£, ' n' 2 at 

*(o^, 
< 

.,as)   L as 'a'     x 

0 < r < s. ^ ... > a > o , 
— n    ' 

for any symmetric gauge function $. To see this we need only prove 

the left hand inequality, which may be written in the form 

(5-5) 
a a 

and which is a consequence of (2.1). 

An interesting counterpart to Theorem 3.2 can he obtained from (j«1*-). 

Theorem 3.5»  If * is a symmetric gauge function satisfying hlV, then 

1 

[*(ot , ...,ciLj)]r is decreasing in r > 0 whenever Ot > 0,  i = l,2,...,n. 
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Thus [»(o^...,a^) *(o^r,...,orI,)]r is decreasing in r > 0. 

Proof. We have that 

^ 

a 
1 < *([~]%...,[^S) < *([^]r,...,[~]r) , [5. 

a 
ai 

the first inequality by blV and {2.1).    The second inequality is (3.5)« 

Thus 

% 

a 

V 
[<k] [«([-i]8,...,^]8))' < (•([-t]r,...,[^]r))r < ($([-^]r,...,[-^]r)}s, 

«i a., 

so that 

^([^]S, .,[^]S))B    <     {*(&r,...,&r)}r 

T. in. 

The theorem now follows from bll. || 

Theorem 3.5 can, of course, be specialized to yield a kind of 

converse to  (c). 

Theorem 3«6.  If cp is a unitarily invariant norm satisfying alV, then 

(c*) [c^AA*)]^2 < c^A) . 

Condition (c*)  can also be obtained under somewhat different 

hypotheses.  In particular, if cp satisfies aV,  then 



c (AA*) = cp(AA*) (^(AA*)"1 ) < (p(A) (pCA-1) 9(A*) (pCA*-1) = c(A) C(A») 

If also <p(A) = <p(A*),  then  (c*)  follows.  Of course, <p(A) = (p(A*) 

if <p is lonitarily invariant. 

k.    Independence of the norm axioms and (c). 

It is our purpose here to show that the condition number inequality 

(c) does not follow from the usual norm axioms al - aV. In fact, 

all, alii, alV, aV and (c)  are independent. 

Remark.  It has been shown by Ostrowski [5] that al  is implied by 

all, alii, aV,  together with <p(A) ^ 0,  so that al is not included 

in the list of independent properties. Rella [k]    has shown that 

all, alii, alV and aV are independent, and we add (c) to this list. 

The results which prove the independence of all - aV and (c) 

are summarized in the following table, where + (-)  indicates that 

a property is true (false). 

cp(A)                       1 all alii alV aV (c) 

1                         i + + + +       1 

(rank A)   (tr AA*)1'2 ;   + + + +       1 

n max  la. . 1                 j j   + + . + +       i 
1   lj'                     4 

max.   la. . 1 + + + +       > 
1  ij'                  •• 

Z   la     1 + ♦ + + i 
1  ij1 
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The remainder of this paper is devoted to proving the propositions 

indicated in the table. 

The results for q)(A) « 1 are obvious, so ve begin by considering 

l/2 
q)(A) = (rank A)(tr AA*)  . In this case, all and alV are obvious, 

1/2 
and (c) follows from Theorem 3«1, since (tr AA*)    is unitarily 

l/2 
invariant. As is well known,  (trAA.*) '   satisfies aVj  this 

together with rank AB < (rank A) (rank B)  yields aV for 

l/2 
(p(A) = (rank A)(tr AA*) ' . That alii is violated may be seen by 

taking A = I and B the matrix with a unit in the (1,1)-th place 

and zeros elsewhere. 

For q)(A) = n max (a..[ and max ja..}  the first four columns 

of the table are well known, and we need only prove (c). Let e 

be the row vector with one in the i-th position and zero elsewhere. 

Denote M  = (m ) where M = C111-!«)^ and let u " AA*. By Cauchy,s 

inequality, 

Kjl 1^1 = le.Ae*! [e^A^e*! < [ (eiUe*)(eje*)(eae*)(eßU-
:Le*) ]l/2 

f ßß\l/2 

Hence, 

max [a  [ max [a [ < (max [u..[ max ju  j)   , 
ifj  ^ o,ß '    "        i.        x:L     a 

CpOO < [c^AA*)]1^2 

Since U = AA* is positive semi-definite. 
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uilu11 =  (eiueiJ (•iB*l#fJ ^ (eiel)2 =  1 > 

and it follows that c (AA*) > 1.  Thus, we have that 

Oui) c^(A) < [^(AA*)]1/2 < c^AA*) , 

which gives  (c). 

Note that the left inequality of (^.l) is a reversal of inequality 

(c*). That (^.l) also holds if Cp(A)  is the maximum of the absolute 

values of the characteristic values of A was proved by 0. Tausky-Todd [6] 

Since the first four columns of the table are well known for 

cp(A) = Z;|a. .|, we again need consider only (c).  If A = (    i  )' 
0 n  I 

where 
2 1 

B = ( ,  2).  Then  (c)  is vi olated. 
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